Filter Results By:
Products
Applications
Manufacturers
-
product
PCIe-7846, Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device
786456-01
PCIe, Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device - The PCIe-7846 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware-in-the-loop testing, custom protocol communication, sensor simulation, and high-speed control. The PCIe-7846 features a dedicated analog-to-digital converter per channel for independent timing and triggering. This device offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.
-
product
PXIe-7866, Kintex-7 325T FPGA, 24-Channel AO, 1 MS/s, PXI Multifunction Reconfigurable I/O Module
787354-01
PXIe, Kintex-7 325T FPGA, 24-Channel AO, 1 MS/s, PXI Multifunction Reconfigurable I/O Module - The PXIe-7866 features flexibility of timing and synchronization with a user-programmable FPGA for onboard processing and direct control over I/O signals. The PXIe-7866 provides 24 analog output, 2 analog input, and 32, 5V input-tolerant digital I/O channels connected to a Kintex-7 325T FPGA to help you design applications for hardware-in-the-loop testing, custom protocol communication, sensor simulation, and high-speed control. You can use the dedicated A/D converter (ADC) for independent timing, individual channel triggering, and multirate sampling. Additionally, the PXIe-7866 includes peer-to-peer streaming for direct data transfer to other PXI Express modules.
-
product
CompactRIO Plug-In Chassis for I/O Modules
The plug-in chassis provides connectivity for I / O modules. The chassis core is an FPGA for reconfigurable I / O signals. Chassis are available in various configurations and are designed to accommodate 4 or 8 C-series modules.
-
product
PXIe-7865, Kintex-7 160T FPGA, 24-Channel AO, 1 MS/s, PXI Multifunction Reconfigurable I/O Module
787355-01
PXIe, Kintex-7 160T FPGA, 24-Channel AO, 1 MS/s, PXI Multifunction Reconfigurable I/O Module - The PXIe-7865 features flexibility of timing and synchronization with a user-programmable FPGA for onboard processing and direct control over I/O signals. The PXIe-7865 provides 24 analog output, 2 analog input, and 32, 5V input-tolerant digital I/O channels connected to a Kintex-7 160T FPGA to help you design applications for hardware-in-the-loop testing, custom protocol communication, sensor simulation, and high-speed control. You can use the dedicated A/D converter (ADC) for independent timing, individual channel triggering, and multirate sampling. Additionally, the PXIe-7865 includes peer-to-peer streaming for direct data transfer to other PXI Express modules.
-
product
USB-7845, Kintex-7 70T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device
783200-02
Kintex-7 70T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device - The USB‑7845 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The USB‑7845 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.
-
product
PCI-7811, 1M Gate Virtex-II FPGA, Digital Reconfigurable I/O Device
779363-01
The PCI‑7811 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. The PCI‑7811 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware‑in‑the‑loop (HIL) test, custom communications protocols, bit error rate test, and other applications that require precise timing and control.
-
product
Multifunction Reconfigurable I/O Device
Multifunction Reconfigurable I/O Devices feature a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware-in-the-loop (HIL) testing, custom protocol communication, sensor simulation, and high-speed control.
-
product
PCIe-7821, Kintex 7 FPGA, Digital Reconfigurable I/O Device
785359-01
The PCIe‑7821 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. Each line offers software-selectable logic levels. The PCIe‑7821 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware‑in-‑the‑loop (HIL) test, bit error rate test, and other applications that require precise timing and control.
-
product
PCIe-7852, Virtex-5 LX50 FPGA, 750 kS/s Multifunction Reconfigurable I/O Device
781103-01
Virtex-5 LX50 FPGA, 750 kS/s Multifunction Reconfigurable I/O Device - The PCIe‑7852 features a user-programmable FPGA for high performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PCIe‑7852 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.
-
product
sbRIO-9401, Non-Enclosed, 5 V/TTL, 8 Bidirectional Channels, 100 ns C Series Digital Module
782400-01
Non-Enclosed, 5 V/TTL, 8 Bidirectional Channels, 100 ns C Series Digital Module - The sbRIO‑9401 is a configurable digital I/O interface for input or output in 4-bit increments. Therefore, the sbRIO‑9401 can create three configurations: 8 digital inputs, 8 digital outputs, or four digital inputs and four digital outputs. With reconfigurable I/O (RIO) technology (CompactRIO only), you can use the LabVIEW FPGA Module to program the sbRIO‑9401 for implementing custom, high-speed counter/timers; digital communication protocols; pulse generation; or other applications. Each channel features transient isolation between the I/O channels and the backplane. Non-enclosed modules are designed for OEM applications.
-
product
PXIe-7862, Kintex-7 325T FPGA, 16-Channel AI, 1 MS/s, PXI Multifunction Reconfigurable I/O Module
786672-01
PXIe, Kintex-7 325T FPGA, 16-Channel AI, 1 MS/s, PXI Multifunction Reconfigurable I/O Module - The PXIe-7862 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of timing and synchronization. With 16 analog input channels connected directly to a Kintex-7 325T FPGA, you have ample space to design applications that require precise timing such as hardware-in-the-loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXIe-7862 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware. The PXIe-7862 also includes peer-to-peer streaming for direct data transfer to other PXI Express modules.
-
product
PXIe-7822, PXI Express Digital RIO with Kintex-7 325T FPGA
783486-01
Kintex 7 325T FPGA, 128 DIO, 512 MB DRAM, PXI Digital Reconfigurable I/O Module—The PXIe‑7822 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. Each line offers software-selectable logic levels. The PXIe‑7822 supports peer‑to‑peer streaming for direct data transfer between PXI Express modules. The PXIe‑7822 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware‑in‑the‑loop (HIL) test, bit error rate test, and other applications that require precise timing and control.
-
product
USRP Software Defined Radio Reconfigurable Device
The USRP Software Defined Radio Reconfigurable Device is built on the LabVIEW reconfigurable I/O (RIO) and universal software radio peripheral (USRP) architectures. It includes a powerful FPGA for advanced DSP that you can program with the LabVIEW FPGA Module. The device includes 2x2 MIMO transceivers or four-channel superheterodyne receivers, supporting center frequencies from 10 MHz to 6 GHz, with up to 160 MHz of instantaneous bandwidth. The USRP Software Defined Radio Reconfigurable Device also optionally includes a GPS‐disciplined oven-controlled crystal oscillator (GPSDO), which provides greater frequency accuracy than temperature- compensated crystal oscillators. Prototyping applications include LTE and 802.11 prototyping, spectrum monitoring, signals intelligence, military communications, radar, direction finding, and wireless research.
-
product
Virtex-5 FPGA with Plug-in I/O
PMC-VFX
Acromag’s PMC-VFX boards feature a reconfigurable Xilinx® Virtex™-5 FPGA enhanced with multiple high-speed memory buffers and a high-throughput PCI-X interface. Field I/O interfaces to the FPGA via the rear J4/P4 connector and/or with optional front mezzanine plug-in I/O modules.
-
product
PCIe-7858, Kintex-7 325T FPGA, 1 MS/s, DRAM Multifunction Reconfigurable I/O Device
786457-01
PCIe, Kintex-7 325T FPGA, 1 MS/s, DRAM Multifunction Reconfigurable I/O Device - The PCIe‑7858 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PCIe‑7858 features a dedicated analog-to-digital converter per channel for independent timing and triggering. This device offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.
-
product
Virtex-5 FPGA with Plug-in I/O
PMC-VLX
Acromag’s PMC-VLX boards feature a reconfigurable Xilinx® Virtex™-5 FPGA enhanced with multiple high-speed memory buffers and a high-throughput PCI-X interface. Field I/O interfaces to the FPGA via the rear J4/P4 connector and/or with optional front mezzanine plug-in I/O modules.
-
product
PXIe-7846, Kintex-7 160T FPGA, 500 kS/s PXI Multifunction Reconfigurable I/O Module
784143-01
Kintex-7 160T FPGA, 500 kS/s PXI Multifunction Reconfigurable I/O Module—The PXIe‑7846 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXIe‑7846 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware. The PXIe‑7846 also includes peer-to-peer streaming for direct data transfer to other PXI Express modules.
-
product
USB-7846, Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device
783201-01
Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device - The USB‑7846 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The USB‑7846 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.
-
product
NI-5781 , 40 MHz Bandwidth, RF Adapter Module for FlexRIO
781267-01
The NI‑5781 is an analog dual-input, dual-output FlexRIO adapter module optimized for interfacing with baseband to RF upconverters and downconverters. When you pair the NI‑5781 with a PXI FPGA Module for FlexRIO, the resulting NI‑5781R is an FPGA-enabled reconfigurable I/O (RIO) baseband transceiver that you can use to implement custom RF modulation and demodulation, channel emulation, bit error rate testing, or spectral monitoring and jamming. Additionally, you can use the low latency and high throughput of FPGA‑based processing for ultra‑high‑speed control and inline processing applications.
-
product
PXIe-5172 PXI Oscilloscope, 100 MHz, 14 bits, 250 MS/s, 8 Channels, 1.5 GB, FPGA: Kintex-7 325T
784225-01
PXIe, 100 MHz, 4- or 8-Channel, 14-Bit, Kintex-7 325T or 410T FPGA Reconfigurable PXI Oscilloscope—The PXIe 5172 high-density PXI oscilloscope has eight simultaneously-sampled channels with flexible settings for coupling and voltage range. PXI oscilloscopes also feature a number of triggering modes, deep onboard memory, and an instrument driver that includes data streaming and analysis functions. This device is ideal for applications with many channels that require up to 250 MS/s or 100 MHz of analog bandwidth and advanced PXI synchronization. The PXIe 5172 also features a programmable Kintex-7 325T or 410T FPGA that can be used for custom acquisition, triggering, signal processing, and data streaming.
-
product
AdvintRIO™ Reconfigurable I/O
PIRANHA
The Piranha platform employs a NI single board RIO (sbRIO), NI C Series I/O modules, and custom circuitry. Piranha systems are not dependent on a separate host computer. They offer both Ethernet, and Wi-Fi connectivity to a powerful real-time controller and high performance field-programmable gate array (FPGA) and up to two (2) C Series I/O modules. It provides stand-alone embedded execution for deterministic LabVIEW Real-Time applications. These controllers are designed for ruggedness, reliability, and low power consumption. The heart of Piranha system is the reconfigurable I/O (RIO) FPGA core. The RIO core has an individual connection to each I/O module and is programmed using easy to use elemental I/O functions to read or write signal information from each module. Multiple units can also be daisy changed together for larger applications.
-
product
PXIe-7847, Kintex-7 160T FPGA, 500 kS/s, DRAM PXI Multifunction Reconfigurable I/O Module
784144-01
Kintex-7 160T FPGA, 500 kS/s, DRAM PXI Multifunction Reconfigurable I/O Module—The PXIe‑7847 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXIe‑7847 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware. The PXIe‑7847 also includes peer-to-peer streaming for direct data transfer to other PXI Express modules.
-
product
PXI-7953, Virtex-5 LX50 FPGA, 750 kS/s PXI Multifunction Reconfigurable I/O Module
780340-01
Virtex-5 LX50 FPGA, 750 kS/s PXI Multifunction Reconfigurable I/O Module—The PXI‑7852 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXI‑7852 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.
-
product
PXI-7854, Virtex-5 LX110 FPGA, 750 kS/s PXI Multifunction Reconfigurable I/O Module
780342-01
Virtex-5 LX110 FPGA, 750 kS/s PXI Multifunction Reconfigurable I/O Module—The PXI‑7854 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXI‑7854 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.
-
product
PCIe-7822, Kintex 7 325T FPGA, Digital Reconfigurable I/O Device
785360-01
The PCIe‑7822 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. Each line offers software-selectable logic levels. The PCIe‑7822 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware‑in‑the‑loop (HIL) test, bit error rate test, and other applications that require precise timing and control.
-
product
PCI-7813, 3M Gate Virtex-II FPGA, Digital Reconfigurable I/O Device
779370-01
The PCI‑7813 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. The PCI‑7813 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware-in‑the‑loop (HIL) test, custom communications protocols, bit error rate test, and other applications that require precise timing and control.
-
product
PXI-7954, Virtex-5 LX110 FPGA, 128 MB DRAM PXI FPGA Module for FlexRIO
780563-01
Virtex-5 LX110 FPGA, 128 MB DRAM PXI FPGA Module for FlexRIO—The PXI‑7954 provides flexible, customizable I/O for LabVIEW FPGA. It includes 132 single-ended I/O lines configurable as 66 differential pairs. You can pair the PXI‑7954 with FlexRIO adapter modules that offer high-performance analog and digital I/O. Together, the two modules create a reconfigurable instrument that you can program with LabVIEW FPGA software.
-
product
PXIe-7971, K325T FPGA, 1.7 GB/s PXI FPGA Module for FlexRIO
782953-01
K325T FPGA, 1.7 GB/s PXI FPGA Module for FlexRIO—The PXIe‑7971 provides flexible, customizable I/O for LabVIEW FPGA. It includes 132 single-ended I/O lines configurable as 66 differential pairs. You can pair the PXIe‑7971 with FlexRIO adapter modules that offer high-performance analog and digital I/O. Together, the two modules create a reconfigurable instrument that you can program with LabVIEW FPGA software. The PXIe‑7971 supports peer‑to‑peer streaming, which directly transfers data among multiple FPGA modules or select PXI Express modules without sending data to the host processor. With this feature, you can add FPGA capabilities to high-performance NI digitizers with NIST‑traceable calibration or expand your FPGA algorithms across multiple FPGAs for computationally demanding applications.
-
product
USRP-2945, 10 MHz to 6 GHz, 80 MHz Bandwidth, Reconfigurable USRP Software Defined Radio Device
785263-01
10 MHz to 6 GHz, 80 MHz Bandwidth, Reconfigurable USRP Software Defined Radio Device - The USRP-2945 provides an integrated hardware and software solution for rapidly prototyping high-performance wireless receiver systems. This software defined radio reconfigurable device is designed for over-the-air signal acquisition and analysis. It features a two-stage superheterodyne architecture with four independent receiver channels and shares local oscillators for phase-coherent operation. It also offers a Kintex-7 FPGA programmable with the LabVIEW FPGA Module. With these features, the USRP-2945 has the RF and processing performance for applications including spectrum monitoring, direction finding, signals intelligence, wideband recording, and radar prototyping.
-
product
USRP Software Defined Radio Device
The USRP Software Defined Radio Device is a reconfigurable RF device that includes a combination of host-based processors, FPGAs, and RF front ends. The USRP Software Defined Radio Device include options that range from lower cost options with fixed FPGA personalities to high-end radios with a large, open FPGAs and wide instantaneous bandwidth. These devices can be used for applications such as multiple input, multiple output (MIMO) and LTE/WiFi testbeds, SIGINT, and radar systems.